Mathematics challenge questions often include problems of the type, "What is the units digit of 7^{100} ?" One solution method examines the following list:

7^{1}	$=$	7
7^{2}	$=$	49
7^{3}	$=$	343
7^{4}	$=$	2401
7^{5}	$=$	16807
7^{6}	$=$	117149
7^{7}	$=$	823543

Note the repeating pattern of the units digits above. $7^{100}=\left(7^{4}\right)^{25}$ Since the units digit of 7^{4} is one, then the units digit of $\left(7^{4}\right)^{25}$ must be one since $(1)^{25}=1$.

Investigate problems of this type and try other integers raised to large powers to find the patterns. Use a binomial expansion method from Algebra II to set up a way to evaluate this type of problem, such as:

$$
7^{100}=(10-3)^{10} .
$$

Write a report detailing your findings and illustrating methods of solution that could be used.

