Let $A B C$ be a triangle with no angle greater than 120. Construct equilateral triangles $A B N, B C L$, and $A C M$ on the side of triangle $A B C$. Connect the centers of the equilateral triangles $A B N, B C L$, and $A C M$ to form a triangle. This triangle is known as the outer Napoleon triangle of $A B C$, named after Napoleon Bonaparte. Then construct equilateral triangle $A B X, B C Y$, and $A C Z$ overlapping in the interior of triangle $A B C$. Connect the centers of the 3 triangles to form a triangle called the inner Napoleon triangle.

Show that the difference between the areas of the outer and inner Napoleon triangles is equal to the area of the original triangle.

Create a display showing your constructions. Attach a report explaining the relationship between the areas of the two Napoleon triangles and the original one.

